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LETTER TO THE EDITOR 

Fokker-Planck dynamics of interacting Brownian particles 

W Hess 
Fakultat fur Physik, Universitat Konstanz, Postfach 5560, D-7750 Konstanz, Germany 

Received 16 February 1981 

Abstract. Starting from an N-particle Fokker-Planck equation, the results for the concen- 
tration autocorrelation function are presented. It is shown that the corresponding memory 
function has the physical meaning of a (k -U)-dependent longitudinal viscosity. A 
numerical mode-mode coupling calculation of the wavevector dependence of the longi- 
tudinal viscosity is found to be in good agreement with experimental results. Comparing the 
Fokker-Planck results with the corresponding Smoluchowski results show that the latter are 
only valid for small wavevectors or small interaction strength. 

In recent years a number of dynamical light-scattering experiments have been per- 
formed on suspensions of charged spherical particles. For a detailed review of these 
experiments see Pusey (1980) and Pusey and Tough (1981). Characteristic features of 
results are a typical liquid-like static structure factor S(k), which indicates short-range 
ordering, and a strongly non-exponential time behaviour of the concentration autocor- 
relation function, which does not result from polydispersity, and which depends on the 
wavevector. Since the discovery of the latter effect, the question of the cause of the 
deviation from a simple diffusion behaviour has been vividly discussed. Explanations 
have been sought in the frequency dependence of the hydrodynamic interaction (Berne 
1977) and in the dynamics of counterions (Altenberger 1980), for example. But these 
possible explanations are ruled out by the fact that their typical relaxation frequencies 
are much larger than the experimentally determined first cumulant of the concentration 
autocorrelation function. 

It has been shown that the first cumulant can be understood as the diffusion 
coefficient of a Brownian particle in the mean field of all other macroparticles (Pusey 
1975, Ackerson 1976). The deviation from an exponential form must be due to 
processes which occur on a slower time scale. In an earlier publication we have shown 
that this effect may be understood as a viscoelastic relaxation of the longitudinal 
component of the stress due to the strong interactions between the particles (Hess 
1981). 

A numerical mode-mode coupling calculation of this effect (Hess and Klein 198 1) 
showed a good qualitative agreement with experimental data (Gruner and Lehmann 
1979). So far our starting point has always been a generalised diffusion equation for 
interacting Brownian particles, the generalised Smoluchowski or Kirkwood equation 
(SE). In this Letter I present the corresponding results obtained from a Fokker-Planck 
equation in phase space (FPE), 

a m ,  PI, t)/at = -fFPm PI, t ) ,  
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wheref({r, p } ,  t )  is the N-particle distribution function in phase space, m is the mass of a 
Brownian particle, the p i  are their momenta, Fi({r}) is the interaction force on particle i 
due to the other Brownian particles, and f is the one-particle friction coefficient of a 
system without interactions. Hydrodynamic interaction is neglected here for simplicity 
and since it seems to be unimportant for the systems under consideration (Pusey and 
Tough 1981). 

The purpose of this Letter is twofold. First, I want to show that, by starting from the 
Fokker-Planck equation, the viscoelastic explanation of the observed non-exponen- 
tiality in the concentration autocorrelation function gives a good quantitative 
agreement with experiment, over the whole range of scattering vectors. Second, 
because of these findings there arise strong doubts concerning the applicability of the 
Smoluchowski equation for systems with strong interactions outside the hydrodynamic 
limit. The SE has the form 

Here p({r}, t )  is the configurational distribution function of N Brownian particles, and 
Do is the diffusion coefficient of a free particle, Do = kBT/f .  The SE (2) can be derived 
from the FPE (1) by an expansion with respect to the spatial gradients alar, (Murphy and 
Aguirre 1972), but alternatively the inverse friction coefficient can be used as an 
expansion parameter (Wilemski 1976, Titulaer 1978, Hess and Klein 1978). Although 
these derivations are only valid asymptotically, the widespread trust in the SE can be 
understood by the fact that for experimentally used frequencies and systems wm/f  << 1. 
Therefore the result of an expansion in f-' seems to be reliable and the applicability of 
the SE has hardly ever been questioned. The first to calculate corrections to the SE were 
Wilemski and Titulaer. These authors showed that the correction terms are of the order 
of ((m/12)a&({r})/ari); for a harmonic potential with a spring constant a this would be 
(ma/12), for example. It follows that the corrections may be important for a system 
with strong interactions. 

Instead of discussing the FPE and the SE in full generality directly, I take a more 
pragmatic point of view and compare certain correlation functions which can be 
calculated exactly from equations (1) and (2), respectively. The concentration auto- 
correlation function is 

(3) 
where (( , . , ))o denotes a canonical expectation value and c(k)  the concentration 
fluctuations 

S ( k ,  t )  = ( l /N)(c(k)  exp(tFPt)c(-k))oe(t), 

! 

c(k) = exp(-ik ri). (4) 
i 

Applying the standard projection operator formalism to the time Fourier transform of 
S ( k ,  t ) ,  we obtain the expression 

(5  1 S ( k )  
iw + (k2/mpS(k))/(iw + l / m  + q11(k, w)k2/mc)' 

S ( k ,  w )  = 

Here S(k) = S ( k ,  t = 0), c = N/ V and 

q11(k, w )  = (p/ V)(Bll(k)[io - d~~~d~-'~lI(-k))o.  (6) 
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6 = 1 -fi and fi is a projection operator onto the space spanned by the concentration 
fluctuations c (k) and the longitudinal gradients of particle current fluctuations, 

(7) P. V j(k) = -ik 1 exp(-ik ri) .  
i m  

&ll(k) may be interpreted as the longitudinal stress fluctuations of the Brownian particle 
system, 

k2&Il(k) = -m6(LFp)+V * j ( k )  

= (? ik * F,({r})  exp(-ik r i )  - kBT(S(k)-' - l ) k ' c ( k ) )  

where (LFp)+ is the Hermitian adjoint of LFP. 
In the hydrodynamic limit equation (6) becomes the Kubo formula for the longi- 

tudinal intrinsic viscosity, and it can be shown that this identification can also be justified 
for arbitrary k and w .  In order to do this, equation (6) is put in a different form. Using 
the formal properties 6' = 6, fi' = fi, $6 = 0 and the identity 

[ iw-QL 3 -[iw-L ] -[iw-L ] PL [iw-LFP]-', .. *FP -1 - "FP -1 *FP -1 " AFP 

we obtain 

this becomes 

Both the numerator and the denominator now have the form of response functions. To 
see this, we introduce an external time-dependent potential into the FPE. This gives rise 
to an additional term in the FP operator, 

(11) 
a 

8LFP(t) = - i ( 2 ~ ) - ~  d3k'U(k', t )  1 exp(ik'ri)k' -, I i api 

where U(k' ,  t )  are the Fourier components of the external potential. The linear 
response of an arbitrary quantity a(k ,  t )  = (~(k)),, which is the expectation value with 
the disturbed time-dependent distribution function, with respect to the external 
potential, becomes 

' P  
a(&, t )  = 

Comparing this result with equation (lo), we find 

I dt' - ( a ( k )  exp[LFP(t- t')]V * j ( - k ) ) ~ U ( k ,  t ' ) .  
-m .v 
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Therefore the memory function ~11(k, w )  in equation (5) gives the response of the stress 
fluctuations to thermal fluctuations of the current gradients and has, for this reason, the 
meaning of a (k - w )-dependent longitudinal viscosity. 

For the frequency range of a light scattering experiment (w < lo6  s-'), the systems in 
which we are interested are strongly overdamped, wm/l<< 1 ; therefore 

This must be compared with the corresponding result from the SE (Hess 1981), 

where ~l l (k ,  w )  has the same physical meaning as before, equation (13). 
According to the two brackets in equation (8), the viscosity can be decomposed into 

an interaction term, a momentum term and two mixed terms. But the momentum 
relaxation occurs on a time scale of O ( m / l )  and therefore we keep only the interaction 
term. Applying now a mode-mode coupling approximation for this interaction term in 
the longitudinal viscosity yields the same result as obtained before, starting from the SE 
(Hess and Klein 1980, 1981). 

g(k, k') = [k ' kl(S(k1) - 1) + k  * kz(S(k2) - 1)1/(S(~l)S(kZ)), (16) 

k1,2 = k / 2  f k'. 
Equations (14) and (16) are a closed set of nonlinear equations for the determination of 
S ( k ,  t )  or S ( k ,  U ) ,  respectively. A lowest-order approximation is obtained if we use in 
(16) the mean field approximation 

(17) 

In this approximation q ( k ,  t )  has been calculated analytically for specific models for 
S(k), and numerically, using an experimental result for S ( k )  (Hess and Klein 1980, 
1981). The non-exponentiality in the experimental S(k, t )  has been analysed by Griiner 
and Lehmann (1979) by the relative deviation between the inverse first cumulant and a 
mean relaxation frequency, 

~ ( k ,  t )  = ~ ( k )  exp(-Dok2t/s(k))e(t). 

(18) 
M ( k ) =  (pi(k)--  v(k) ) /p i (k) ,  

p l ( k )  = --In S(k, t ) l t G O ,  
CO a 

at 0 
v ( k )  = S ( k ) / l  dt S(k, t ) .  

Comparing the quantity M ( k )  with equations (14) and (15), we find 

from the SE. (196) 

Figure 1 shows a comparison of the mode-mode coupling calculation of qll(k, w = 
O ) k 2 / c l ,  equations (16) and (17), using the experimental S(k), with the corresponding 
M ( k )  from the FPE (19u), and the experimental data. There is a good agreement 
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between theory and experiment for the M ( k )  from the FPE. The agreement with M ( k )  
from the SE is only satisfactory at small and large k, where the effect is small. This is 
easily understood from equations (19a,b): the results from the FPE and the SE coincide if 

It was said in the beginning that the SE can be derived from the FPE by an expansion 
with respect to the spatial gradients and with respect to the inverse friction coefficient. 
Comparing now the exact results for S ( k ,  0) from the FPE, equation (3, with the 
corresponding result from the SE, equation (15), we find that both indeed become 
identical for k + 0. But for arbitrary k there are two conditions to obtain coincidence 
between equations (5) and (15), wm/l<< 1,  which leads from equation (5) to (14), and 
q(k, w ) k 2 / c l < <  1. The first condition can always be fulfilled by choosing suitable 
experimental conditions. For the light scattering experiments on polystyrene latexes, 
for example, it is well fulfilled. But the second condition depends on the value of the 
generalised longitudinal viscosity, which is an intrinsic property of the system under 
consideration. It is determined by the interaction strength, by concentration, tempera- 
ture, etc. For our example, the highly charged polystyrene latexes, both the numerical 
calculation as well as the experimental data show for a wavevector k = k ,  ( k ,  is the 
wavevector where S ( k )  has its first maximum) that vll(km, w = O)k,?,,/cl- 1.1. There- 
fore the second condition is not fulfilled and equation (14), not the SE result (15), is the 
appropriate form of S ( k ,  w )  for these systems. 

Since the SE is derived from the FPE the FPE must be considered as superior. A 
discrepancy of results obtained from both equations therefore indicates a deficiency of 
the SE. My conclusion is that the SE is not suited to describe systems with strong 
interaction outside the hydrodynamic regime, on a spatial length scale of the order of 
the correlation length. 

w = O)k*/Cl<< 1. 
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